All posts by Matthieu Dupont de Dinechin

Atelier Terre et Vidéo au Collège de la Pacaudière

Première journée d’atelier au collège de la Pacaudière. Nous disposons pour cet atelier de rebuts de terre de l’usine de briques de Mably. C’est une terre très agréable à travailler. Pour découvrir le matériau, nous avons commencé par un exercice “classique”: essayer de monter le plus haut possible avec une certaine quantité de terre, sans contrainte technique. Cela permet d’évoquer des notions de structure, de masse, d’aborder la forme ainsi que les relations entre surface et volume. Nous avons ensuite fait des maquettes d'”abris” en utilisant des élements répétitifs au choix:

  • colombins (cylindres)
  • boules
  • briques

Enfin, nous avons filmé les effets de la lumière sur ces constructions et pour chaque groupe un élève a du présenter le travail face à la caméra.

La seconde journée de l’atelier est décrite sur cette page.

Tricube House is on the cover of the special issue of Eco-Maison-Bois

A double page about the Tricube house has been published in a special issue of Eco-Maison-Bois.
The 3D image made with Blender to explain the technical structure is on the front cover:

Couverture du Hors-Série Eco-Maison-Bois avec la maison Tricube en couverture.
Couverture du Hors-Série Eco-Maison-Bois avec la maison Tricube en couverture.

And the original image:
Vue éclatée

3D print for architects

A lot is said about 3D printing and how it may change (or not) the world. As an architect I will try to show you how it can change the way you think about physical models of your designs. After more than ten years of use of Blender for building virtual buildings (that sometimes are build in real life after 😀 ), to be able to print those designs right on my desktop is realy exciting. So here are some examples of how 3D printers can be used for architectural projects, and some practical aspect of 3D printing with FDM for architectural designs.
Several technologies exist for 3D printing, but the most widely used is Fused Deposition Modelling (FDM), thanks mainly to the RepRap project. An extruder heat a filament and deposit it layer by layer to create the shape. The material is generaly PLA (a biodegradable plastic) or ABS. Some technics allow much higher quality, wider range of material and color printing, and you can use the services of some websites to have your projects printed at some cost. But here I will speak of the FDM, the only technic that one can buy for himself. One can build its own 3D printer for around 500$ or even less, or buy a kit or a complete 3D printer for less than 2000$. The different models have different speed, reliability and precision.
At Chantier Libre, the FabLab I’m lauching we bought an Ultimaker, as it is known to be very fast and accurate, and to be useable easily without too much tinkering. But the main reason is that it is OpenHardware.

The thing I prefer with 3D printing is that it allows you to create shapes you could not build with traditionnal technics. As an example I used for that again a softbody simulation to generate the geometry, and a decimate modifier to make a polygonised “low-poly” version of it. It is inspired by the work of Gaudi:

After modelling in Blender, you export the model in STL format, and open it in CURA, the software that will change this model to something understandable by the printer. In Cura you can resize, move and rotate your model, and then slice it: it will calculate each layer of material that will be deposited by the printer. You can choose the speed, the temperature, the thickness of the walls, the density of the fillings…

A timelapse of the whole process:

For simple forms, the quality is good with the default settings of the software, no need for hours of experimentations. You have to cope with the typical FDM surface : you can see the layers of PLA (but with high quality settings, and a layer height of 85 micrometers, it’s not so much a problem). You can after that sand the model like in the example below, or use some new filaments that leave a sandstone like surface (I’m testing it right now):

maquette 3D poncée

For more complex forms like the ones in the video, you may need to add supports (the software places them for you) for the hangover. In some cases, you may need to adjust the settings (like for the columns of the example) to prevent some small blobs or wires. And like every tool, the more you know it, the bertter you use it. For such complex models, the use of the 3D print tool box included in Blender really can help you out sparing a lot of time .

The most annoying part is the time needed to print. A small objects of less than 3cm can be printed in less than 10 minutes, like the ones below:


But a big object like the example takes easily 20 hours to print. Don’t forget we work in 3D: 3 times larger means 27 times longer. So you can easily understand you are not so much limited my the size of the printer (it can print 20cmx20cmx20cm) but by the time.

I may say to finish that today, with a reasonably preiced printer you can achieve some very nice results, and it allows you to design shapes you could not imagine build before. But don’t forget this technology is still young : it takes some time, it’s not perfect, and the printer itself will give its best result only if you spend time to master it. And thats why FabLabs are so great: the fab managers master the tools for you and help you get the best of your 3D models.

Here you can download the .blend file:
cathedrale

Or directly the two stl files to print them:
cathedrale
cathedralefacettes

Blender conference 2012

1600x1200-fracture1

For the 2012 Blender Conference, I gave a presentation of my use of Blender as a design tool.

Here is the video of the conference, unfortunately with low resolution:

YouTube Preview Image

Here is the PDF of my slides for the conference, with better quality images it’s about 10 megas

ViralataArchitecture

The SVG version ca be opened in any modern browse. It’s heavier, about 20 megas, so you may prefer right click > save as:

ViralataArchitecture

And here are two videos of previous works I used for the presentation:

“Blender 2.6: 3D pour l’architecture” a book in French about the use of Blender for architectural design and visualisation

Blender 2.6 : 3D pour l’architecture can be found in all good libraries, edited by Eyrolles.

As an architect, I use Blender daily at nearly all stages of my workflow, from quick sketching to final rendering. I tried to write the book with which I would have loved to learn Blender, from my own experience, but keeping in focus other possible workflows. You will learn the basis of Blender, always with architectural examples, and advanced design and modelisation tools, everything needed to produce images, either realists or artistics, and a lot of tips and tricks to improve your workflow. Among other things:

  • Use the mesh tools as virtual clay to give life to your ideas and concepts
  • Build organic buildings or any curvy design with the subdivision surface
  • Learn how to use Curves for intuitive sketching and modeling
  • Improve your models, make them mor complex and rich with the modifiers
  • Learn the precision tools that can make the use of Blender for precise modeling fast and effective
  • Discover the materials an texture, with typical examples on how to apply them on buildings
  • Make any artistic (NPR) rendering with the node editor
  • Use Cycles for ultra-realistic renderings
  • Animate anything in your scene for stunning walkthroughs

Who may be interested by this book :

  • Architects, draughtsmen, and designers working in building and architecture related business
  • CG artists, designers in video game industry (for all the building settings of the games)
  • Students in architecture or design seeking for a powerfull 3D tool that they will be able to use in their professional life
  • Any CG enthusiast wanting to discover Blender or new ways of using it.

Files

You can download here the blender files with the exemples used in the book. They are all under license Creative Commons CC-BY-SA

1-1premierescene

2-1boxmodeling

3-1courbes

3-2courbesextrudees

4-1DéformationsBooléens

4-2Array

7-1exrenduext

7-2Nodes1

7-3NodesZcombine

7-4Nodespasses

8-1animation

Annexescycles

chaise

maisonTroglodyte